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Computacional (IQTCUB), UniVersitat de Barcelona, Martı́ i Franquès 1, 08028 barcelona, Spain

ReceiVed: June 1, 2009; ReVised Manuscript ReceiVed: October 5, 2009

The tunnel effect in one-dimensional collision problems is analyzed in terms of numerical wavepacket time
propagations, in position, momentum, and phase space representations of the problem. Bohm’s total potential
is used to provide a classical-like description of tunnelling quantum dynamics, under a time- and density-
dependent potential. Wigner, Husimi, as well as Bohm phase space distributions are used in the present
study, with their relative performances for the present problem having been analyzed.

I. Introduction

This work is the third of a series1,2 devoted to the charac-
terization of Bohm’s total potential (BTP), and its use for a
Bohmian, alternate interpretation of quantum effects in dynami-
cal processes. In particular, it focuses on the use of quantum
phase space distribution functions, for the computation of
transmission factors in one-dimensional (1D) collision problems.
The ultimate goal is a quantitative characterization of the tunnel
effect, using a classical-like view of particle dynamicssunder
a time- and density-dependent potential energy.

The first paper of the series,1 hereafter called Paper I,
presented a method for evaluating BTP from wavepacket
propagation, in terms of a simple product of matrices. The result
has been the ability to compute BTP at any time increment, so
as to look at its time development, as a function of the particle’s
initial state and the form of the classical potential. This study
singled out the importance of the initial state density, since its
form appeared to control the BTP shape for most of the time
interval.3 The radar wave analogy on BTP,4,5 along with its time-
dependence, prompted an additional study,6 by which a depen-
dence of quantum transmission on the initial launching distance,
between the packet and the barrier, was inferred. This coun-
terintuitive dependence leads, in favorable cases, to a quantita-
tive increase in transmission the shorter is the launching distance,
up to 20% per Å. The second paper,2 Paper II, is devoted to a
quantitative analysis of resonance features, in terms of BTP
temporal oscillations. The oscillation amplitude is found to
depend on the usual features: the barrier height and width, the
well depth and width, as well as the wavepacket parameters,
mainly width and central momentum. However, the oscillation
frequency is solely dependent on the classical potential steep-
ness, that is, on how fast the classical barrier height and well
depth develop, as a function of position.

The present work is a continuation in the quantitative
characterization of quantum phenomena, under Bohm’s total
potential view. As stated, Bohm’s view to quantum mechanics
provides a classical-like description. For instance, a tunnelling
event is described as a trajectory having its energy below the
classical barrier, but aboVe the BTP barrier at the time interVal
it is crossed. Such statement is done on the basis of the classical-

like structure of the defining differential equation, the quantum
Hamilton-Jacobi (QHJ) equation:4,5

However, the exact transformation of the TD Schrödinger
equation generates, in addition, a continuity equation coupled
to QHJ:

so that the analysis has to take into account both equations.
Nevertheless, there exists the possibility of still focusing on just
one primary equation, for both equations may combine into a
single one, by means of the Theory of Characteristics.6 The
result is a unique integro-differential equation for the real
quantity S, formerly the phase of the (complex) Schrödinger’s
wave function:

This result is a structurally cumbersome equation, for which
it is not straightforward to state that physical events behave
classical-like. For instance, the influence of the action function
depends on the history of the problem, as it appears in the third
term between braces, in eq 2. This may have the meaning that
the energy-spreading nature of wavepackets is included into this
integro-differential equation, so that, for example, transmission
might be naturally endowed with an energy uncertainty, hence
allowing under-the-barrier transmission events.

Our primary goal in the present work has been checking the
fundamental classical-like hypothesis of Bohmian mechanics.
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Given the difficulties associated with a formal analysis of the
integro-differential eq 2, the present study is based on numerical
simulations, specifically of model, simple 1D barrier systems,
so as to discard any nonessential feature. Among the wealth of
existing quantum phenomena, the focus here is on tunnelling.

The computation of the tunnelling transmission probability,
from classical arguments, requires the simultaneous knowledge
of the density distribution, in both position and momentum
spaces, for each time instant (since the potential barrier is time-
dependent). This may be (approximately) done if one knows
the phase space distribution function, for the quantum time-
dependent state, and it is summed in the phase space region
corresponding to momentum and position ranges leading to
classical transmission, for each time increment. However, as it
is well-known, the interdependence between position and
momentum in quantum mechanics prevents defining rigorous
quantum phase space distribution functions. There exist several
proposals in the literature, which satisfy part of some postulated
general requirements, set to overcome this problem.7 Among
these proposals, the best-known in molecular problems are the
Wigner distribution function,8 probably the most used, and the
Husimi distribution function.9 Since, for the present case, no
formal arguments give priority to any of the proposed phase
distribution functions, Wigner and Husimi phase space distribu-
tion functions will be used and tested here. In addition, the Bohm
distribution function,5 arising naturally from the guiding equation
for momentum, will be used and compared to the previous ones.

The structure of the remainder of the Paper is the following.
Section II focuses on the theoretical tools, whereas Section III
shows and discusses results corresponding to the classical-like
hypothesis check. Finally, conclusions are drawn in Section IV.

II. Theory

The problem so far studied in the present work, by compu-
tational means, corresponds to a Gaussian, minimum uncertainty
wavepacket, set to collide against an Eckart potential energy
barrier. The wavepacket is then time-evolved numerically, the
time-dependence being computed in position, momentum and
phase-space representations of the problem. The latter include
Wigner, Husimi, and Bohm phase-space distribution functions.

The time propagation is performed for sufficiently long times,
so as to compute the transmission factor. Whereas its computa-
tion in the position and momentum representations is straight-
forward, just requiring the computation of the area in the
transmitted region (for position), and in the positive momenta
region (for momentum), calculations in phase-space have been
done differently. The purpose has been to check our main
hypothesis, namely that classical-like dynamics accurately
describes the complete transmission processes.

Such procedure amounts to checking whether summing the
density, located precisely on the barrier (in position), and strictly
aboVe the barrier (in momentum), do reproduce the accurate
transmission factors, previously obtained in both position and
momentum representations. It is important to emphasize that
this test cannot be performed simply by integrating the long-
time density located in the simultaneous positive momenta and
position region, for it may hide transmission owing to an
hypothetical failure of the basic QHJ assumption, namely that
motion is classical under BTP.

i. Wavepacket Propagation Method, in Position and
Momentum Space. The present algorithm, for the time
propagation of a given initial wave function has been given
elsewhere.1,2,6 Briefly, the time-evolved wavepacket is calculated
in terms of a variational basis set expansion of the type:

where just one spatial dimension has been indicated. In eq 3,
�0(x) is the initial wavepacket, chosen to be of Gaussian,
coherent-state type. In atomic units, it reads:

where (x0,p0) establishes the center of the packet, and γ is a
parameter related to the Gaussian width. When the basis in eq
1, {φj}, j ) 1, ..., N starts from a sinc discrete variable
representation (DVR) original basis, the propagation algorithm
transforms to matrix products:

where y(t) is the vector, of dimension N, containing the total
wave function at each grid position, at time t; t is a diagonal
matrix with diagonal elements e-iEjt/p, j ) 1, ..., N; L is the
eigenvectors matrix associated to the DVR-stationary basis
change; and j0 is the vector corresponding to the initial
wavepacket (eq 4), with components corresponding to its value
at each DVR grid position.

It is not difficult to obtain the momentum representation
analogue of the time-propagation formula shown in eq 5. A
convenient procedure is to transform the time-dependent solution
in the position representation, via Fourier transform, to mo-
mentum space. The reason is that the present DVR method for
wavepacket propagation provides an especially simple matrix
algorithm, casting the momentum wave function at any time,
in terms of the initial wavepacket in the position representation,
as

where yp(t) is the wave function amplitude in momentum space,
F is the Fourier transform matrix:

with ∆x the grid increment, xm the mth discrete position in DVR
space, and finally pn the nth discrete momentum in momentum
space. Expression 7 arises from a simple rectangular quadrature
for the space-momentum Fourier transform, especially appealing
since it uses the same DVR spatial increment. The above
expressions have shown their accuracy in a recent work,10 on a
space and momentum representation analyses of the Hartman
effect.

ii. Computation of BTP. The computation of the quantum
potential requires evaluating the density R, as well as its second
spatial deriVatiVes, at any time increment. An advantage of the
present formulation for the wave function time propagation is
that, after suitable transformations, it leads to a simple algorithm
for the computation of the quantum potential (and thus the total
potential) at any time increment, just by doing simple matrix
algebra. It has been shown in detail in paper I how to perform
such calculation, so that here it is only provided the final
expression, for the sake of simplicity.

ψ(x, t) ) ∑
j)1

N

φj(x)〈φj|�0〉e
-iEjt/p (3)

�0(x) ) (2γ
π )1/4

exp{-γ(x - x0)
2 + ip0(x - x0)} (4)

y(t) ) LTtLj0 (5)

yp(t) ) FLTtLy0 (6)

Fmn ) ∆x exp(-ixmpn) (7)
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Denoting B ) ÂÂ, the squared modulus of the time propaga-
tion operator, and performing the quotient in the quantum
potential expression, one gets, in atomic units1

thus yielding the final working expression, for the computation
of the quantum potential in terms of quantities obtained during
the time propagation stage.

iii. Time Propagation of the Quantum Phase-Space Dis-
tribution Functions. Wigner, Husimi, and Bohm quantum
distribution functions are to be evaluated, in the present work,
as a function of time. We consider their evaluation, for the three
cases, from the wave function as the primary quantity. This is
quite often the case for the Wigner and Husimi functions, not
so frequent for the Bohm case, since the latter usually focuses
on the trajectory approach11 (rather than the wave function
approach) to quantum dynamics. The following paragraphs show
how this can be done from our original time propagation
algorithm, so that matrix algorithms are developed for the
calculation of the above quantum distribution functions.

a. Wigner Distribution Function. The Wigner distribution
function is given by the expression8

At this point, we may benefit from our previous algorithm
for the computation of the wave function as a vector. This vector
has as many components as discrete positions are included in
our complete space range. Thus, it is readily obtained that the
FW matrix, having dimensions (qdim,pdim), being qdim (pdim)
the number of discrete positions (momenta) taken in the DVR
procedure, is given by

where G is the time-independent matrix given by

whereas M(t) contains the product of wave function amplitudes
from Wigner’s expression (eq 9)

The product between eqs 11 and 12, as explicitly written,
provides the ith,jth element of the FW matrix. Even though the
Wigner distribution function is positive for a Gaussian wave-
packet, it is known to take on negative values as time
progresses.7,12 For this reason, it is necessary to consider alternate
distribution functions.

b. Husimi Distribution Function. Among several quantum
phase-space distribution functions so far proposed in the
literature, the Husimi distribution function occupies a distin-
guished position, because it belongs to a class of non-negative
functions.

The Husimi distribution function is the density operator in
the squeezed state representation, of which the coherent states
are a particular case.13-15 Thus, one may generate the Husimi
function simply by projecting the original, Schrödinger density,
onto a basis of squeezed (or coherent) states. However, we have
found it much simpler to obtain the Husimi distribution from
the Wigner function, since it then yields a simple matrix
algorithm for such computation.

The basis for the existence of such algorithm rests on the
fact that the Husimi distribution function exactly corresponds
to a Gaussian smoothing of the Wigner distribution. The
relevant, initial expression is7

that can be written in a matrix algorithm, given by the equation,

with G and M(t) given by eqs 11 and 12, respectively, and the
elements of the D and B matrices are

In eqs 13, 15, and 16, m is the mass of the system, whereas
κ is an arbitrary constant. Actually, the latter gives a measure
of the wavepacket width. In our present case, if κ is made to
coincide with γ, the initial wavepacket width for the molecular
system, the squeezed state transforms to the coherent state.

c. Bohm Phase-Space Distribution Function. Even though
the Husimi distribution function is non-negative, its properties
still lack some of the requirements for a strictly proper
distribution function. For instance, it is found that it does not
satisfy the marginals, i.e. ∫FH(p,q,t)dp * 〈q|F̂|q〉 and ∫FH(p,q,t)dq
* 〈p|F̂|p〉, where F̂ is the standard density operator.12 A quantum
phase-space distribution function fulfilling such requirement,
is the Madelung-de Broglie-Bohm distribution function,5

Bohm distribution for short, which is, in addition, quite a natural
choice in the present work. It is defined from its primary
quantities, R and S, in the form:

so that the guiding equation is incorporated inside the definition.
It is possible again to derive a matrix algorithm for its
computation. The corresponding expression is shown to have
the form,

where the elements of the U(t) matrix are,
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that is, it is 1 for momenta being numerically equal to ∇S(q,t),
and zero otherwise. V(t) is a diagonal matrix, with elements,

The wave function ψ(ql,t) in eq 20 is the standard Schrödinger
wave function, computed at the discrete position ql, at time t.
On the other hand, the function ∇S(ql,t) may be computed
directly from the wave function, for instance by means of the
following scalar expression,

even though other possibilities might be available, for instance
through the computation of the quantum-mechanical flux.16

III. Results and Discussion

As stated, calculations in the present work seek checking the
classical-like hypothesis of the QHJ equations, when the
dynamics is considered under BTP. Consequently, an especially
simple, 1D system, has been considered, so as to discard any
complexity in the transmission factor (as, for instance, the
perpendicular-to-longitudinal energy transfer in higher dimen-
sional systems).

Figure 1 shows time snapshots of the transmission across an
Eckart potential barrier, in position as well as momentum space.
In short, we consider collision of a wavepacket against an Eckart
barrier, with the initial conditions set to correspond to a
tunnelling process. In particular, the potential energy function
and its specific parameters, are the following:

thus providing an symmetric Eckart barrier, centered at the
coordinate origin. The whole set of numerical quantities is given
in atomic units. Concerning the grid data, a total of 200 DVR
points have been included in the calculation. This is more than
enough for convergence, so that final results may be considered
numerically accurate. The spatial range runs from -10 to 10,
giving a distance between consecutive DVR points of 0.05. The
momentum range goes from -30 to 30, leading to a momentum
increment of 0.30 between consecutive discrete values.

Figure 2 provides an illustration of the basics of the present
test. It shows, on one hand, the classical potential barrier height,
as a function of time. Obviously, it is a constant function. In
addition, this figure displays the BTP barrier height, again as a
function of time. It is a non-monotonic function, leading to very
low values for short times, going through a maximum for
intermediate times, whereas it tends smoothly toward the
classical barrier height, at large times. The shaded area illustrates
the quantum-classical barrier height differences. The classical-
like hypothesis linked to the QHJ equation tells that the origin
of quantum effects may be attributable to the shaded area.17

Hence, it may explain tunneling, whenever the quantum barrier

height is lower than the classical, whereas it may lead to
antitunneling when the quantum barrier is larger than the
classical.

Whereas Figure 2 yields qualitative explanations for quantum
effects, in terms of quantities natural to the QHJ equation,
providing quantitative estimates of tunneling probabilities
requires the knowledge, as a function of time, of the density
distribution. However, this knowledge must be simultaneous
in position and momentum, for one must be able to tell whether

Ul,k(t) ) δ(pk - ∇S(ql, t)) (19)

Vll(t) ) ψ(ql, t)ψ*(ql, t) (20)

∇S(ql, t) ) 1
2

∇ln[ ψ(ql, t)

ψ*(ql, t)] (21)

V(x) ) A
e�(x-x1)

(1 + e�(x-x1))2

A ) 200, x1 ) 0, � ) 20

Figure 1. Time snapshots, for four different time instances (in atomic
units), of a coherent state wavepacket colliding against an Eckart barrier
in (a) position space, and (b) momentum space. The wavepacket initial
conditions are x0 ) -2, p0 ) 10, m ) 1, γ ) 1/(2δ)2, δ ) 0.4, with
being x0 the initial location of the wavepacket center, p0 its central
momentum, m the mass, and δ the width of the Gaussian, coherent
state, as given by eq 3. Panel (a): Blue trace: wavepacket density; brown
trace: Eckart potential energy; red trace: BTP. Panel (b): Red trace:
wavepacket density; blue trace: t ) 0 wavepacket density, included
for comparison purposes; vertical black lines: location, in momentum
space, of the potential energy barrier height (rightmost line), and the
zero momentum (leftmost line).

Figure 2. BTP value at the classical barrier’s position, as a function
of time. Blue trace: classical barrier, a constant function of time.
Continuous red trace, BTP for a wavepacket with γ ) 0.4.
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a given density portion has enough energy to overcome a
precisely located, in space, potential energy “obstacle”, the
potential barrier. Consequently, the quantum mechanical density
has to be transformed to a phase space distribution.

Figure 3 shows the time snapshots for transmission across
the Eckart potential barrier, in phase-space, using the Wigner
distribution function. The plane spans the phase space coordinate
ranges, whereas the vertical axis corresponds to the distribution
density. The position axis runs from left to right, whereas
momentum runs from bottom to top. The time-evolved distribu-
tion experiences the well-known drift toward larger positions.
At a given time, the reflected part of the packet emerges as a
negative momentum distribution, with positions decreasing as
time increases.

It may be algebraically shown that a Gaussian wavepacket
displays a Wigner distribution function which is positive
everywhere.7 However, the time-propagation and the collision
against the Eckart barrier perturbs the Gaussian shape, thus
making the Wigner distribution to attain an oscillating shape,
leading to negative values. In particular, at intermediate times,
where the largest part of the packet is on the barrier region, the
Wigner function displays the highest oscillation structure, and
therefore the highest negative values. As the collision further
evolves, the transmitted and reflected parts recover a Gaussian-
like shape, smoothing the Wigner function and leading to an
essentially positive function. However, our summation procedure
for the calculation of the transmission factor (see below), is
strongly dominated by events occurring at intermediate times,
so that the strong oscillations of the Wigner function will have
an important influence.

Figure 4 shows the equivalent time snapshots of Figure 3,
for the Husimi quantum phase-space distribution function.
Remarkably, the Husimi function displays a smooth shape,
compared to Wigner, thus reflecting what is known from the
algebraic analysis of the Husimi distribution, namely that it is
obtained from a Gaussian smoothing of the Wigner distribution.
Consequently, the Husimi distribution is found to behave much
properly than the Wigner case, mainly because it is well behaved
at intermediate times, those most relevant in our summation
procedure for the transmission factor.

Figure 5 displays the phase-space analogue, for the Bohm
quantum phase-space distribution function. Note that this
distribution is simply a 1D line on the phase-space plane, instead

of the solid volume of the Wigner and Husimi distributions.
This is a direct consequence of the Dirac delta function
appearing in the Bohm distribution function definition. In any
case, however, its behavior is quite accurate, thus confirming
the strong consistency of Bohm’s main assumption, thus leading
to the guiding equation. It has to be noted that the emergence
of the negative momentum branch, corresponding to the reflected
part of the packet, is contaminated by a branch cut, in the
computation of the action and its gradient. Fortunately, it has
no consequences to our purpose, since the computation of the
transmission factor strictly focuses on the positive, transmitted
part of the problem. Alternate forms for the computation of the
action and its gradient, which may avoid the branch cut problem,
are being currently investigated.

Having shown the time-dependent quasi-probability distribu-
tions, for the Wigner, Husimi, and Bohm cases, the information
necessary for the computation of the transmission factor, under
the QHJ classical-like hypothesis, is already available. The
remaining work to be done is the time-sliced integration of the
phase space density, simultaneously located on the potential
barrier, in position space, and above the barrier, in momentum
space. Figure 6 displays a diagram, which is intended to explain
the basis for our time-sliced summation method, in the calcula-
tion of the transmission factor. This summation is based on the
following procedure:

(1) Compute the quantum phase-space distribution function,
for small time increments, from the initial state to the asymptotic

Figure 3. Time snapshots, for the same four time instances of Figure
1, of the Wigner phase-space distribution function, corresponding to
the wavepacket collision against an Eckart barrier. The coordinate and
momentum origin is located at the center of the pq plane. Note the
rightwards drift of the distribution density, as time progresses, the
emergence of the negative momentum part as the reflected packet is
generated, along with the wiggles displaying negative values, for
intermediate times.

Figure 4. The same as in Figure 3, for the Husimi distribution function.
Note the much smoother shape of the distribution density, compared
to the Wigner case.

Figure 5. The same as in Figure 3 and 4, for the Bohm distribution
function. The negative momentum branch, corresponding to the reflected
part of the packet (as it is generated starting from the t ) 0.45 time
snapshot), displays a wrong sign, owing to a branch cut in the
computation of the complex logarithm of eq 21. Fortunately, it does
not affect the present work, for just the positive momentum branch is
required for the computation of the instantaneous transmission.
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stage; (2) For each time snapshot, locate in phase space Bohm’s
total potential barrier height; (3) Once the barrier height is
located, define an integration area, for each time increment, as
the capped triangle having the limits shown in Figure 6; (4)
Compute the enclosed volume by the distribution density located
on the area determined in 3; (5) Add this volume for each time
increment. The repeated summation for all times should proVide
the transmission factor, computed strictly from the density
distribution located in the area of no-return, as the strict
requirement for transmission in 1D classical processes.

The results of our summation procedure are presented in
Figure 7, for two representative wavepacket’s initial momenta,
p0 ) 8 and 10 au. It is observed, as expected, that transmission
corresponds to the large time limit of our cumulative summation.

First, it is seen that the Wigner distribution function leads to
wrong, much lower transmission factors than the accurate ones,
computed from the time-dependent calculation of the transmitted
area, in position space. This failure, as inspection of Figure 3
may evidence, stems from the unphysical sharp oscillations,
leading to negative density values, at intermediate values of time,
position, and momentum.

On the other hand, the Bohm distribution function leads to
wrong predictions for low momentum, whereas it yields fairly
good estimates for larger values. Actually, analysis of other
initial WP conditions do show that the Bohm distribution is
accurate, provided that transmission is large enough. The reasons
for the low energy failure are not clear to us right now, being
actively investigated in our group.

Finally, it is seen that the Husimi case gets very close to the
accurate transmission value. More precisely, it is indistinguish-
able for p0 ) 8, whereas it is slightly lower for p0 ) 10.
Interestingly, the time-dependent transmission for the Husimi
case develops a bit before than the accurate one, even though
the final value is accurate.

In any case, it is quite remarkable that the use of quantum
phase-space distribution functions leads to such good results,
when compared to accurate values. It provides confidence on
their robustness in general applications, as well as on the
assumptions done in the present work. In particular, it may be
stated that the classical-like assumption for transmission pro-
cesses is quite accurate, providing an insightful picture of deep
tunneling processes. One cannot avoid describing microscopic
dynamics as a classical motion under a time-dependent, waVe-
like potential energy, where any tunneling process emerges from
the difference between the time-dependent pattern displayed by
the total potential energy and the classical potential energy.

IV. Conclusions

The present work focused on testing the classical-like
hypothesis inherent of the QHJ equation, and Bohmian mechan-
ics in general. One-dimensional tunneling collisions of a
wavepacket against a symmetric Eckart barrier have been
considered, for several values of the initial collision energy.

The computation of transmission probabilities, from the
classical-like QHJ hypothesis, required developing computa-
tional algorithms for the calculation of time-evolved quasi-
probability distributions. In particular, formulas for such
computations, in terms of a sinc-DVR propagation algorithm,
have been developed and implemented, for the Wigner, Husimi,
and Bohm phase-space quasi-probability functions. The use of
rectangular quadratures yielded especially simple expressions,
uniquely consisting of matrix products for the time propagation.

Once available the quasi-probability distributions, the actual
computation of transmission probabilities required a very
specific algorithm, based on calculating the density precisely
on the barrier location, in position space, along with the density
above the barrier height, in momentum space. Then the
summation run over the whole set of time-slices, spanning the

Figure 6. Schematic diagram, depicting the instantaneous integration
area, used in the computation of the transmission factor, along with
the contour graph, corresponding to the density distribution. The
transmission factor is obtained as the sum, for all times, of the
distribution density volume enclosed by that area, at each time. Note
that this area is bounded by four lines, two vertical and two horizontal:
the right vertical line points on BTP maximum barrier height. The left
vertical line gives, for each p value, the distance ∆q traveled by a phase
space point in ∆t, the time increment selected in our calculations to
reach convergence in the present summation process. The lower
horizontal line is determined by the BTP barrier height, in momentum
units, at each time t and the classical barrier location. Finally, the upper
horizontal line is given by the highest momentum value considered in
our calculations, well above the maximum range spanned by the
distribution function. The two panels correspond to two consecutive
time intervals, the second panel including the information from the
previous time so as to better appreciate the time evolution. The previous
density distribution is shown as the dotted line, whereas the previous
integration area is shown in red, the actual one being drawn in black.
The area in black has its lower limit located upward, compared to the
red, previous time case, since it corresponds to a typical situation
whereby Bohm’s total potential barrier gets higher at the second time
interVal.

Figure 7. Cumulative transmission, as a function of time, for the
accurate quantum mechanical case (brown), Wigner (light blue trace),
Husimi (blue), and Bohm (red) quantum phase-space distribution
functions. The complete transmission corresponds to the large time limit
of the cumulative transmission. Upper panel, p0 ) 8, and lower panel,
p0 ) 10 au.
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complete transmission process. Developing such summation
process required a careful testing of the numerical parameters,
in particular, the time, position, and momentum increments.

Results show that the Wigner distribution is not adequate for
the present purpose. The collision against the barrier generates
strong oscillations in the packet, which translate into strongly
negative values of the Wigner distribution, for intermediate
values of time, position, and momentum. Since our summation
procedure accumulates data from all times, it is not possible to
get rid of such spurious oscillations by, for instance, resorting
to an asymptotic analysis.

The Bohm distribution, quite natural in the present context,
is shown to describe transmission under the classical QHJ
hypothesis quite accurately for energies large enough, whereas
it is not adequate for low energies. It is not clear right not why
the Bohm distribution does not work for low energies, an
hypothesis being that such distribution function may be too
simple to account for a problem strongly dependent on a
simultaneous spreading in position and momentum.

Finally, the Husimi distribution, a Gaussian smoothing of
Wigner’s, seem to work fairly well to our purpose. Results for
transmission are pretty good for the energy range scanned in
the present work, in some cases being indistinguishable from
the exact estimation for the transmission factor.

In any case, at present it is not possible to fully state that the
classical-like QHJ hypothesis has been proven to hold. First,
we performed a first numerical analysis of the problem, thus
being far from general. Second, we had to resort to several quasi-
probability distribution functions, since it is well-known that
none of them are totally rigorous. One may then argue that
claiming the present test as successful, in this regard, has the
distribution function as an “adjusting parameter”. Consequently,
a sensible conclusion here might be that a necessary, but not
sufficient condition, for the classical QHJ hypothesis to hold,
has been found. In other words, the computation of tunneling
transmission was found sufficiently close the accurate value,
for one fairly good distribution function, and a sufficiently
general 1D collision problem.
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